Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9135, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644397

RESUMO

Stone wool is widely used as an efficient thermal insulator within the construction industry; however, its performance can be significantly impacted by the presence of water vapor. By altering the material's characteristics and effective thermo-physical properties, water vapor can reduce overall efficacy in various environmental conditions. Therefore, understanding water adsorption on stone wool surfaces is crucial for optimizing insulation properties. Through the investigation of interaction between water molecules and calcium aluminosilicate (CAS) phase surfaces within stone wool using density functional theory (DFT), we can gain insight into underlying mechanisms governing water adsorption in these materials. This research aims to elucidate the molecular-level interaction between water molecules and CAS surfaces, which is essential for understanding fundamental properties that govern their adsorption process. Both dissociative and molecular adsorptions were investigated in this study. For molecular adsorption, the adsorption energy ranged from -  84 to -  113 kJ mol - 1 depending on surface orientation. A wider range of adsorption energy ( -  132 to -  236 kJ mol - 1 ) was observed for dissociative adsorption. Molecular adsorption was energetically favored on (010) surfaces while dissociative adsorption was most favorable on (111) surfaces. This DFT study provides valuable insights into the water adsorption behavior on low index surfaces of CAS phase in stone wool, which can be useful for designing effective strategies to manage moisture-related issues in construction materials. Based on these findings, additional research on the dynamics and kinetics of water adsorption and desorption processes of this thermal isolation material is suggested.

2.
Membranes (Basel) ; 13(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999345

RESUMO

Palladium is a vital commodity in the industry. To guarantee a stable supply in the future, it is imperative to adopt more effective recycling practices. In this proof-of-concept study, we explore the potential of electrodialysis to enhance the palladium concentration in a residual solution of palladium recycling, thus promoting higher recovery rates. Experiments were conducted using an industrial hydrochloric acid solution containing around 1000 mg/L of palladium, with a pH below 1. Two sets of membranes, Selemion AMVN/CMVN and Fujifilm Type 12 AEM/CEM, were tested at two current levels. The Fujifilm membranes, which are designed for low permeability of water, show promising results, recovering around 40% of palladium within a two-hour timeframe. The Selemion membranes were inefficient due to excessive water transport. All membranes accumulated palladium in their structures. Anion-exchange membranes showed higher palladium accumulation at lower currents, while cation-exchange membranes exhibited increased palladium accumulation at higher currents. Owing to the low concentration of palladium and the presence of abundant competing ions, the current efficiency remained below 2%. Our findings indicate a strong potential for augmenting the palladium stage in industrial draw solutions through electrodialysis, emphasizing the importance of membrane properties and process parameters to ensure a viable process. Beyond the prominent criteria of high permselectivity and low resistance, minimizing the permeability of water within IEMs remains a key challenge to mitigating the efficiency loss associated with uncontrolled mixing of the electrolyte solution.

3.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37290070

RESUMO

Since the 1920s, the Enskog solutions to the Boltzmann equation have provided a route to predicting the transport properties of dilute gas mixtures. At higher densities, predictions have been limited to gases of hard spheres. In this work, we present a revised Enskog theory for multicomponent mixtures of Mie fluids, where the Barker-Henderson perturbation theory is used to calculate the radial distribution function at contact. With parameters of the Mie-potentials regressed to equilibrium properties, the theory is fully predictive for transport properties. The presented framework offers a link between the Mie potential and transport properties at elevated densities, giving accurate predictions for real fluids. For mixtures of noble gases, diffusion coefficients from experiments are reproduced within ±4%. For hydrogen, the predicted self-diffusion coefficient is within 10% of experimental data up to 200 MPa and at temperatures above 171 K. Binary diffusion coefficients of the CO2/CH4 mixture from simulations are reproduced within 20% at pressures up to 14.7 MPa. Except for xenon in the vicinity of the critical point, the thermal conductivity of noble gases and their mixtures is reproduced within 10% of the experimental data. For other molecules than noble gases, the temperature dependence of the thermal conductivity is under-predicted, while the density dependence appears to be correctly predicted. Predictions of the viscosity are within ±10% of the experimental data for methane, nitrogen, and argon up to 300 bar, for temperatures ranging from 233 to 523 K. At pressures up to 500 bar and temperatures from 200 to 800 K, the predictions are within ±15% of the most accurate correlation for the viscosity of air. Comparing the theory to an extensive set of measurements of thermal diffusion ratios, we find that 49% of the model predictions are within ±20% of the reported measurements. The predicted thermal diffusion factor differs by less than 15% from the simulation results of Lennard-Jones mixtures, even at densities well exceeding the critical density.


Assuntos
Gases , Difusão Térmica , Viscosidade , Condutividade Térmica , Simulação por Computador
4.
Phys Rev E ; 107(3-2): 035108, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073064

RESUMO

We have assessed the assumption of local thermodynamic equilibrium in a shock wave by comparing local thermodynamic data generated with nonequilibrium molecular dynamics (NEMD) simulations with results from corresponding equilibrium simulations. The shock had a Mach number approximately equal to 2 in a Lennard-Jones spline liquid. We found that the local equilibrium assumption holds perfectly well behind the wave front, and is a very good approximation in the front itself. This was supported by calculations of the excess entropy production in the shock front with four different methods that use the local equilibrium assumption in different ways. Two of the methods assume local equilibrium between excess thermodynamic variables by treating the shock as an interface in Gibbs's sense. The other two methods are based on the local equilibrium assumption in a continuous description of the shock front. We show for the shock studied in this work that all four methods give excess entropy productions that are in excellent agreement, with an average variance of 3.5% for the nonequilibrium molecular dynamics (NEMD) simulations. In addition, we solved the Navier-Stokes (N-S) equations numerically for the same shock wave using an equilibrium equation of state (EoS) based on a recently developed perturbation theory. The results for the density, pressure, and temperature profiles agree well with the profiles from the NEMD simulations. For instance, the shock waves generated in the two simulations travel with almost the same speed; the average absolute Mach-number deviation of the N-S simulations relative to NEMD is 2.6% in the investigated time interval.

5.
J Chem Phys ; 158(10): 104107, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922124

RESUMO

We present a classical density functional theory (DFT) for fluid mixtures that is based on a third-order thermodynamic perturbation theory of Feynman-Hibbs-corrected Mie potentials. The DFT is developed to study the interfacial properties of hydrogen, helium, neon, deuterium, and their mixtures, i.e., fluids that are strongly influenced by quantum effects at low temperatures. White Bear fundamental measure theory is used for the hard-sphere contribution of the Helmholtz energy functional, and a weighted density approximation is used for the dispersion contribution. For mixtures, a contribution is included to account for non-additivity in the Lorentz-Berthelot combination rule. Predictions of the radial distribution function from DFT are in excellent agreement with results from molecular simulations, both for pure components and mixtures. Above the normal boiling point and 5% below the critical temperature, the DFT yields surface tensions of neon, hydrogen, and deuterium with average deviations from experiments of 7.5%, 4.4%, and 1.8%, respectively. The surface tensions of hydrogen/deuterium, para-hydrogen/helium, deuterium/helium, and hydrogen/neon mixtures are reproduced with a mean absolute error of 5.4%, 8.1%, 1.3%, and 7.5%, respectively. The surface tensions are predicted with an excellent accuracy at temperatures above 20 K. The poor accuracy below 20 K is due to the inability of Feynman-Hibbs-corrected Mie potentials to represent the real fluid behavior at these conditions, motivating the development of new intermolecular potentials. This DFT can be leveraged in the future to study confined fluids and assess the performance of porous materials for hydrogen storage and transport.

6.
J Chem Phys ; 158(11): 114108, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948791

RESUMO

Arguably, the main challenge of nucleation theory is to accurately evaluate the work of formation of a critical embryo in the new phase, which governs the nucleation rate. In Classical Nucleation Theory (CNT), this work of formation is estimated using the capillarity approximation, which relies on the value of the planar surface tension. This approximation has been blamed for the large discrepancies between predictions from CNT and experiments. In this work, we present a study of the free energy of formation of critical clusters of the Lennard-Jones fluid truncated and shifted at 2.5σ using Monte Carlo simulations, density gradient theory, and density functional theory. We find that density gradient theory and density functional theory accurately reproduce molecular simulation results for critical droplet sizes and their free energies. The capillarity approximation grossly overestimates the free energy of small droplets. The incorporation of curvature corrections up to the second order with the Helfrich expansion greatly remedies this and performs very well for most of the experimentally accessible regions. However, it is imprecise for the smallest droplets and largest metastabilities since it does not account for a vanishing nucleation barrier at the spinodal. To remedy this, we propose a scaling function that uses all relevant ingredients without adding fitting parameters. The scaling function reproduces accurately the free energy of the formation of critical droplets for the entire metastability range and all temperatures examined and deviates from density gradient theory by less than one kBT.

7.
J Therm Biol ; 112: 103402, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796932

RESUMO

Mammals possess complex structures in their nasal cavities known as respiratory turbinate bones, which help the animal to conserve body heat and water during respiratory gas exchange. We considered the function of the maxilloturbinates of two species of seals, one arctic (Erignathus barbatus), one subtropical (Monachus monachus). By means of a thermo-hydrodynamic model that describes the heat and water exchange in the turbinate region we are able to reproduce the measured values of expired air temperatures in grey seals (Halichoerus grypus), a species for which experimental data are available. At the lowest environmental temperatures, however, this is only possible in the arctic seal, and only if we allow for the possibility of ice forming on the outermost turbinate region. At the same time the model predicts that for the arctic seals, the inhaled air is brought to deep body temperature and humidity conditions in passing the maxilloturbinates. The modeling shows that heat and water conservation go together in the sense that one effect implies the other, and that the conservation is most efficient and most flexible in the typical environment of both species. By controlling the blood flow through the turbinates the arctic seal is able to vary the heat and water conservation substantially at its average habitat temperatures, but not at temperatures around -40 °C. The subtropical species has simpler maxilloturbinates, and our model predicts that it is unable to bring inhaled air to deep body conditions, even in its natural environment, without some congestion of the vascular mucosa covering the maxilloturbinates. Physiological control of both blood flow rate and mucosal congestion is expected to have profound effects on the heat exchange function of the maxilloturbinates in seals.


Assuntos
Focas Verdadeiras , Conchas Nasais , Animais , Focas Verdadeiras/fisiologia , Cavidade Nasal , Temperatura , Água , Regiões Árticas
8.
J Chem Phys ; 156(24): 244504, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778084

RESUMO

Fluids confined in small volumes behave differently than fluids in bulk systems. For bulk systems, a compact summary of the system's thermodynamic properties is provided by equations of state. However, there is currently a lack of successful methods to predict the thermodynamic properties of confined fluids by use of equations of state, since their thermodynamic state depends on additional parameters introduced by the enclosing surface. In this work, we present a consistent thermodynamic framework that represents an equation of state for pure, confined fluids. The total system is decomposed into a bulk phase in equilibrium with a surface phase. The equation of state is based on an existing, accurate description of the bulk fluid and uses Gibbs' framework for surface excess properties to consistently incorporate contributions from the surface. We apply the equation of state to a Lennard-Jones spline fluid confined by a spherical surface with a Weeks-Chandler-Andersen wall-potential. The pressure and internal energy predicted from the equation of state are in good agreement with the properties obtained directly from molecular dynamics simulations. We find that when the location of the dividing surface is chosen appropriately, the properties of highly curved surfaces can be predicted from those of a planar surface. The choice of the dividing surface affects the magnitude of the surface excess properties and its curvature dependence, but the properties of the total system remain unchanged. The framework can predict the properties of confined systems with a wide range of geometries, sizes, interparticle interactions, and wall-particle interactions, and it is independent of ensemble. A targeted area of use is the prediction of thermodynamic properties in porous media, for which a possible application of the framework is elaborated.

9.
Eur Phys J E Soft Matter ; 45(5): 41, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503580

RESUMO

When a temperature difference is applied over a porous medium soaked with a fluid mixture, two effects may be observed, a component separation (the Ludwig-Soret effect, thermodiffusion) and a pressure difference due to thermo-osmosis. In this work, we have studied both effects using non-equilibrium thermodynamics and molecular dynamics. We have derived expressions for the two characteristic parameters, the Soret coefficient and the thermo-osmotic coefficient in terms of phenomenological transport coefficients, and we show how they are related. Numerical values for these coefficients were obtained for a two-component fluid in a solid matrix where both fluid and solid are Lennard-Jones/spline particles. We found that both effects depend strongly on the porosity of the medium and weakly on the interactions between the fluid components and the matrix. The Soret coefficient depends strongly on whether the fluid is sampled from inside the porous medium or from bulk phases outside, which must be considered in experimental measurements using packed columns. If we use a methane/decane mixture in bulk as an example, our results for the Soret coefficient give that a temperature difference of 10 K will separate the mixture to about 49.5/50.5 and give no pressure difference. In a reservoir with 30% porosity, the separation will be 49.8/50.2, whereas the pressure difference will be about 15 bar. Thermo-osmotic pressures with this order or magnitude have been observed in frost-heave experiments.

10.
J Chem Phys ; 156(10): 104504, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291787

RESUMO

It is generally not straightforward to apply molecular-thermodynamic theories to fluids with short-ranged attractive forces between their constituent molecules (or particles). This especially applies to perturbation theories, which, for short-ranged attractive fluids, typically must be extended to high order or may not converge at all. Here, we show that a recent first-order perturbation theory, the uv-theory, holds promise for describing such fluids. As a case study, we apply the uv-theory to a fluid with pair interactions defined by the Lennard-Jones spline potential, which is a short-ranged version of the LJ potential that is known to provide a challenge for equation-of-state development. The results of the uv-theory are compared to those of third-order Barker-Henderson and fourth-order Weeks-Chandler-Andersen perturbation theories, which are implemented using Monte Carlo simulation results for the respective perturbation terms. Theoretical predictions are compared to an extensive dataset of molecular simulation results from this (and previous) work, including vapor-liquid equilibria, first- and second-order derivative properties, the critical region, and metastable states. The uv-theory proves superior for all properties examined. An especially accurate description of metastable vapor and liquid states is obtained, which might prove valuable for future applications of the equation-of-state model to inhomogeneous phases or nucleation processes. Although the uv-theory is analytic, it accurately describes molecular simulation results for both the critical point and the binodal up to at least 99% of the critical temperature. This suggests that the difficulties typically encountered in describing the vapor-liquid critical region are only to a small extent caused by non-analyticity.

11.
Phys Rev E ; 104(1-1): 014131, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412362

RESUMO

We have considered a shock wave as a surface of discontinuity and computed the entropy production using nonequilibrium thermodynamics for surfaces. The results from this method, which we call the "Gibbs excess method" (GEM), were compared with results from three alternative methods, all based on the entropy balance in the shock-front region, but with different assumptions about local equilibrium. Nonequilibrium molecular dynamics (NEMD) simulations were used to simulate a thermal blast in a one-component gas consisting of particles interacting with the Lennard-Jones/spline potential. This provided data for the theoretical analysis. Two cases were studied, a weak shock with Mach number M≈2 and a strong shock with M≈6 and with a Prandtl number of the gas Pr≈1.4 in both cases. The four theoretical methods gave consistent results for the time-dependent surface excess entropy production for both Mach numbers. The internal energy was found to deviate only slightly from equilibrium values in the shock front. The pressure profile was found to be consistent with the Navier-Stokes equations. The entropy production in the weak and strong shocks were approximately proportional to the square of the Mach number and decayed with time at approximately the same relative rate. In both cases, some 97% of the total entropy production in the gas occurred in the shock wave. The GEM showed that most of the shock's kinetic energy was converted reversibly into enthalpy and entropy, and a small amount was dissipated as produced entropy. The shock waves traveled at almost constant speed, and we found that the overpressure determined from NEMD simulations agreed well with the Rankine-Hugoniot conditions for steady-state shocks.

12.
Membranes (Basel) ; 11(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669178

RESUMO

The ohmic resistances of the anion and cation ion-exchange membranes (IEMs) that constitute a reverse electrodialysis system (RED) are of crucial importance for its performance. In this work, we study the influence of concentration (0.1 M, 0.5 M, 1 M and 2 M) of ammonium bicarbonate solutions on the ohmic resistances of ten commercial IEMs. We also studied the ohmic resistance at elevated temperature 313 K. Measurements have been performed with a direct two-electrode electrochemical impedance spectroscopy (EIS) method. As the ohmic resistance of the IEMs depends linearly on the membrane thickness, we measured the impedance for three different layered thicknesses, and the results were normalised. To gauge the role of the membrane resistances in the use of RED for production of hydrogen by use of waste heat, we used a thermodynamic and an economic model to study the impact of the ohmic resistance of the IEMs on hydrogen production rate, waste heat required, thermochemical conversion efficiency and the levelised cost of hydrogen. The highest performance was achieved with a stack made of FAS30 and CSO Type IEMs, producing hydrogen at 8.48× 10-7 kg mmem-2s-1 with a waste heat requirement of 344 kWh kg-1 hydrogen. This yielded an operating efficiency of 9.7% and a levelised cost of 7.80 € kgH2-1.

13.
J Chem Inf Model ; 61(2): 840-855, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33566592

RESUMO

We present a new method for computing chemical potential differences of macroscopic systems by sampling fluctuations in small systems. The small system method, presented by Schnell et al. [Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is used to create small embedded systems from molecular dynamics simulations, in which fluctuations of the number of particles are sampled. The sampled fluctuations represent the Boltzmann distributed probability of the number of particles. The overlapping region of two such distributions, sampled from two different systems, is used to compute their chemical potential difference. Since the thermodynamics of small systems is known to deviate from the classical thermodynamic description, the particle distributions will deviate from the macroscopic behavior as well. We show how this can be utilized to calculate the size dependence of chemical potential differences and eventually extract the chemical potential difference in the thermodynamic limit. The macroscopic chemical potential difference is determined with a relative error of 3% in systems containing particles that interact through the truncated and shifted Lennard-Jones potential. In addition to computing chemical potential differences in the macroscopic limit directly from molecular dynamics simulation, the new method provides insights into the size dependency that is introduced to intensive properties in small systems.


Assuntos
Simulação de Dinâmica Molecular , Probabilidade , Termodinâmica
14.
Membranes (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35054575

RESUMO

The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition, the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration, we pinpoint the most promising salts for use in REDHE, which we find to be KNO3, LiNO3, LiBr and LiCl. To further validate these results and compare the system performance with different salts, there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model, experimental studies can be designed to utilize the most favorable process conditions (e.g., salt solutions).

15.
J Chem Phys ; 155(24): 244504, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972373

RESUMO

Small systems have higher surface area-to-volume ratios than macroscopic systems. The thermodynamics of small systems therefore deviates from the description of classical thermodynamics. One consequence of this is that properties of small systems can be dependent on the system's ensemble. By comparing the properties in grand canonical (open) and canonical (closed) systems, we investigate how a small number of particles can induce an ensemble dependence. Emphasis is placed on the insight that can be gained by investigating ideal gases. The ensemble equivalence of small ideal gas systems is investigated by deriving the properties analytically, while the ensemble equivalence of small systems with particles interacting via the Lennard-Jones or the Weeks-Chandler-Andersen potential is investigated through Monte Carlo simulations. For all the investigated small systems, we find clear differences between the properties in open and closed systems. For systems with interacting particles, the difference between the pressure contribution to the internal energy, and the difference between the chemical potential contribution to the internal energy, are both increasing with the number density. The difference in chemical potential is, with the exception of the density dependence, qualitatively described by the analytic formula derived for an ideal gas system. The difference in pressure, however, is not captured by the ideal gas model. For the difference between the properties in the open and closed systems, the response of increasing the particles' excluded volume is similar to the response of increasing the repulsive forces on the system walls. This indicates that the magnitude of the difference between the properties in open and closed systems is related to the restricted movement of the particles in the system. The work presented in this paper gives insight into the mechanisms behind ensemble in-equivalence in small systems, and illustrates how a simple statistical mechanical model, such as the ideal gas, can be a useful tool in these investigations.

16.
Langmuir ; 36(27): 7879-7893, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32519871

RESUMO

Distributed thin films of water and their coexistence with droplets are investigated using a capillary description based on a thermodynamic fundamental relation for the film Helmholtz energy, derived from disjoining pressure isotherms and an accurate equation of state. Gas-film and film-solid interfacial tensions are derived, and the latter has a dependence on film thickness. The resulting energy functionals from the capillary description are discretized, and stationary states are identified. The thermodynamic stability of configurations with thin films in systems that are closed (canonical ensemble) or connected to a particle reservoir (grand canonical ensemble) is evaluated by considering the eigenvalues of the corresponding Hessian matrices. The conventional stability criterion from the literature states that thin flat films are stable when the derivative of the disjoining pressure with respect to the film thickness is negative. This criterion is found to apply only in open systems. A closer inspection of the eigenvectors of the negative eigenvalues shows that condensation/evaporation destabilizes the film in an open system. In closed systems, thin films can be stable even though the disjoining pressure derivative is positive, and their stability is governed by mechanical instabilities of a similar kind to those responsible for spinodal dewetting in nonvolatile systems. The films are stabilized when their thickness and disjoining pressure derivative are such that the minimum unstable wavelength is larger than the container diameter. Droplets in coexistence with thin films are found to be unstable for all considered examples in open systems. In closed systems, they are found to be stable under certain conditions. The unstable droplets in both open and closed systems are saddle points in their respective energy landscapes. In the closed system, they represent the activation barrier for the transition between a stable film and a stable droplet. In the open system, the unstable droplets represent the activation barrier for the transition from a film into a bulk liquid phase. Thin films are found to be the equilibrium configuration up to a certain value of the total density in a closed system. Beyond this value, there is a morphological phase transition to stable droplet configurations.

17.
J Chem Phys ; 152(13): 134106, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268763

RESUMO

This work revisits the fundamentals of thermodynamic perturbation theory for fluid mixtures. The choice of reference and governing assumptions can profoundly influence the accuracy of the perturbation theory. The statistical associating fluid theory for variable range interactions of the generic Mie form equation of state is used as a basis to evaluate three choices of hard-sphere reference fluids: single component, additive mixture, and non-additive mixture. Binary mixtures of Lennard-Jones fluids are investigated, where the ratios of σ (the distance where the potential is zero) and the ratios of ϵ (the well depth) are varied. By comparing with Monte Carlo simulations and results from the literature, we gauge the accuracy of different theories. A perturbation theory with a single-component reference gives inaccurate predictions when the σ-ratio differs significantly from unity but is otherwise applicable. Non-additivity becomes relevant in phase-equilibrium calculations for fluids with high ϵ-ratios or when the mixing rule of σ incorporates non-additivity through an adjustable parameter. This can be handled in three ways: by using a non-additive hard-sphere reference, by incorporating an extra term in the additive hard-sphere reference, or with a single-component reference when the σ-ratio is close to unity. For σ- and ϵ-ratios that differ significantly from unity, the perturbation theories overpredict the phase-equilibrium pressures regardless of reference. This is particularly pronounced in the vicinity of the critical region for mixtures with high ϵ-ratios. By comparing with Monte Carlo simulations where we compute the terms in the perturbation theory directly, we find that the shortcomings of the perturbation theory stem from an inaccurate representation of the second- and third-order perturbation terms, a2 and a3. As mixtures with molecules that differ significantly in size and depths of their interaction potentials are often encountered in industrial and natural applications, further development of the perturbation theory based on these results is an important future work.

18.
J Chem Phys ; 152(7): 074507, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087642

RESUMO

We extend the statistical associating fluid theory of quantum corrected Mie potentials (SAFT-VRQ Mie), previously developed for pure fluids [Aasen et al., J. Chem. Phys. 151, 064508 (2019)], to fluid mixtures. In this model, particles interact via Mie potentials with Feynman-Hibbs quantum corrections of first order (Mie-FH1) or second order (Mie-FH2). This is done using a third-order Barker-Henderson expansion of the Helmholtz energy from a non-additive hard-sphere reference system. We survey existing experimental measurements and ab initio calculations of thermodynamic properties of mixtures of neon, helium, deuterium, and hydrogen and use them to optimize the Mie-FH1 and Mie-FH2 force fields for binary interactions. Simulations employing the optimized force fields are shown to follow the experimental results closely over the entire phase envelopes. SAFT-VRQ Mie reproduces results from simulations employing these force fields, with the exception of near-critical states for mixtures containing helium. This breakdown is explained in terms of the extremely low dispersive energy of helium and the challenges inherent in current implementations of the Barker-Henderson expansion for mixtures. The interaction parameters of two cubic equations of state (Soave-Redlich-Kwong and Peng-Robinson) are also fitted to experiments and used as performance benchmarks. There are large gaps in the ranges and properties that have been experimentally measured for these systems, making the force fields presented especially useful.

19.
Phys Rev Lett ; 124(4): 045701, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058783

RESUMO

The study of nucleation in fluid mixtures exposes challenges beyond those of pure systems. A striking example is homogeneous condensation in highly surface-active water-alcohol mixtures, where classical nucleation theory yields an unphysical, negative number of water molecules in the critical embryo. This flaw has rendered multicomponent nucleation theory useless for many industrial and scientific applications. Here, we show that this inconsistency is removed by properly incorporating the curvature dependence of the surface tension of the mixture into classical nucleation theory for multicomponent systems. The Gibbs adsorption equation is used to explain the origin of the inconsistency by linking the molecules adsorbed at the interface to the curvature corrections of the surface tension. The Tolman length and rigidity constant are determined for several water-alcohol mixtures and used to show that the corrected theory is free of physical inconsistencies and provides accurate predictions of the nucleation rates. In particular, for the ethanol-water and propanol-water mixtures, the average error in the predicted nucleation rates is reduced from 11-15 orders of magnitude to below 1.5. The curvature-corrected nucleation theory opens the door to reliable predictions of nucleation rates in multicomponent systems, which are crucial for applications ranging from atmospheric science to research on volcanos.

20.
Sensors (Basel) ; 19(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540533

RESUMO

Fabrication of multimode fiber optic interferometers requires accurate control of certain parameters to obtain reproducible results. This paper evaluates the consequences of practical challenges in fabricating reflection-based, fiber optic interferometers by the use of theory and experiments. A guided-mode propagation approach is used to investigate the effect of the end-face cleave angle and the accuracy of the splice in core-mismatched fiber optic sensors. Cleave angles from high-end fiber cleavers give differences in optical path lengths approaching the wavelength close to the circumference of the fiber, and the core-mismatched splice decides the ensemble of cladding modes excited. This investigation shows that the cleave angle may significantly alter the spectrum, whereas the splice is more robust. It is found that the interferometric visibility can be decreased by up to 70% for cleave angles typically obtained. An offset splice may reduce the visibility, but for offsets experienced experimentally the effect is negligible. An angled splice is found not to affect the visibility but causes a lower overall intensity in the spectrum. The sensitivity to the interferometer length is estimated to 60 nm/mm, which means that a 17 µm difference in length will shift the spectrum 1 nm. Comparisons to experimental results indicate that the spliced region also plays a significant role in the resulting spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...